If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+9k-9=0
a = 1; b = 9; c = -9;
Δ = b2-4ac
Δ = 92-4·1·(-9)
Δ = 117
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{117}=\sqrt{9*13}=\sqrt{9}*\sqrt{13}=3\sqrt{13}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{13}}{2*1}=\frac{-9-3\sqrt{13}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{13}}{2*1}=\frac{-9+3\sqrt{13}}{2} $
| 1-7u=-34 | | -36=7v-1 | | -6=x/3-8 | | 5(v-1)=-50 | | 8=12y-4y | | 0=-4.9t^2=25t | | x+7+x+4=9 | | -23x=−12x+5 | | -3=y/2+3 | | 6+v/5=26 | | 2x+6x=1421 | | 181.50=x-0.2x | | -44=x/8 | | -3(6p+6)-2(5-17)=3(6+5p) | | Y/8+2/5=y/5-2/5 | | 2w^2-2w=24 | | Y/9+1/2=y/2-1/2 | | 5(3x-3)-2=5(x-3)+38 | | ||7x+6|-11|=4- | | n/6/7=81/6 | | 5(2x-3)=5(x-5)+37 | | 2(1-4x)=3(3x+2) | | 7x+8=15x | | 4(y–3)=18 | | X=2133+10x | | (6x4)+(6x7)=x(4+7) | | 12-2y=43 | | 7(7+3)=5y+8 | | 5(x=2)-(3x=10)=-6 | | -3(6p+2)-2(1-14p)=3(5+3p) | | 4(-1y+6)=12 | | (4y+4)-(2+3y)=3 |